Copied to
clipboard

G = C32xDic3order 108 = 22·33

Direct product of C32 and Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C32xDic3, C33:3C4, C32:4C12, C3:(C3xC12), C6.(C3xC6), (C3xC6).7C6, C2.(S3xC32), C6.10(C3xS3), (C3xC6).11S3, (C32xC6).1C2, SmallGroup(108,32)

Series: Derived Chief Lower central Upper central

C1C3 — C32xDic3
C1C3C6C3xC6C32xC6 — C32xDic3
C3 — C32xDic3
C1C3xC6

Generators and relations for C32xDic3
 G = < a,b,c,d | a3=b3=c6=1, d2=c3, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 80 in 52 conjugacy classes, 30 normal (10 characteristic)
C1, C2, C3, C3, C3, C4, C6, C6, C6, C32, C32, C32, Dic3, C12, C3xC6, C3xC6, C3xC6, C33, C3xDic3, C3xC12, C32xC6, C32xDic3
Quotients: C1, C2, C3, C4, S3, C6, C32, Dic3, C12, C3xS3, C3xC6, C3xDic3, C3xC12, S3xC32, C32xDic3

Smallest permutation representation of C32xDic3
On 36 points
Generators in S36
(1 15 7)(2 16 8)(3 17 9)(4 18 10)(5 13 11)(6 14 12)(19 33 29)(20 34 30)(21 35 25)(22 36 26)(23 31 27)(24 32 28)
(1 3 5)(2 4 6)(7 9 11)(8 10 12)(13 15 17)(14 16 18)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 35 33)(32 36 34)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 22 4 19)(2 21 5 24)(3 20 6 23)(7 26 10 29)(8 25 11 28)(9 30 12 27)(13 32 16 35)(14 31 17 34)(15 36 18 33)

G:=sub<Sym(36)| (1,15,7)(2,16,8)(3,17,9)(4,18,10)(5,13,11)(6,14,12)(19,33,29)(20,34,30)(21,35,25)(22,36,26)(23,31,27)(24,32,28), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,32,16,35)(14,31,17,34)(15,36,18,33)>;

G:=Group( (1,15,7)(2,16,8)(3,17,9)(4,18,10)(5,13,11)(6,14,12)(19,33,29)(20,34,30)(21,35,25)(22,36,26)(23,31,27)(24,32,28), (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,32,16,35)(14,31,17,34)(15,36,18,33) );

G=PermutationGroup([[(1,15,7),(2,16,8),(3,17,9),(4,18,10),(5,13,11),(6,14,12),(19,33,29),(20,34,30),(21,35,25),(22,36,26),(23,31,27),(24,32,28)], [(1,3,5),(2,4,6),(7,9,11),(8,10,12),(13,15,17),(14,16,18),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,35,33),(32,36,34)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,22,4,19),(2,21,5,24),(3,20,6,23),(7,26,10,29),(8,25,11,28),(9,30,12,27),(13,32,16,35),(14,31,17,34),(15,36,18,33)]])

C32xDic3 is a maximal subgroup of   C33:8(C2xC4)  C33:8D4  C33:4Q8  S3xC3xC12  He3:C12

54 conjugacy classes

class 1  2 3A···3H3I···3Q4A4B6A···6H6I···6Q12A···12P
order123···33···3446···66···612···12
size111···12···2331···12···23···3

54 irreducible representations

dim1111112222
type+++-
imageC1C2C3C4C6C12S3Dic3C3xS3C3xDic3
kernelC32xDic3C32xC6C3xDic3C33C3xC6C32C3xC6C32C6C3
# reps11828161188

Matrix representation of C32xDic3 in GL3(F13) generated by

300
010
001
,
300
030
003
,
100
040
0010
,
100
001
0120
G:=sub<GL(3,GF(13))| [3,0,0,0,1,0,0,0,1],[3,0,0,0,3,0,0,0,3],[1,0,0,0,4,0,0,0,10],[1,0,0,0,0,12,0,1,0] >;

C32xDic3 in GAP, Magma, Sage, TeX

C_3^2\times {\rm Dic}_3
% in TeX

G:=Group("C3^2xDic3");
// GroupNames label

G:=SmallGroup(108,32);
// by ID

G=gap.SmallGroup(108,32);
# by ID

G:=PCGroup([5,-2,-3,-3,-2,-3,90,1804]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^6=1,d^2=c^3,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<